ILCRoot Studies of a High Energy Muon Collider

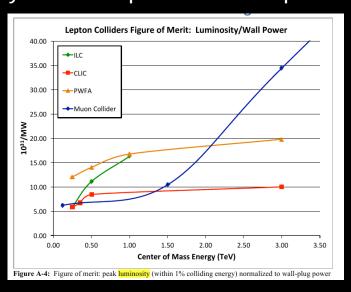
A. Mazzacane

‡ Fermilab

MAP 2014 Spring Meeting

27-31 May 2014 Fermilab

Introduction


- LHC results seems to indicate new physics spectrum likely to be in the multi-Tev range.
- If narrow s-channel states exist in the multi-TeV region they will play an important role in precision studies for new physics.

Increase of luminosity with energy. Needed for new physics. Wall power consumption

is a major concern.

➤ A Muon Collider seems to be the only high luminosity lepton collider candidate capable to reach CM energies > 3 TeV.

The physics potential of a multi-TeV Muon Collider is outstanding. It offers both discovery, as well as precision, measurement capabilities.

J-P. Delahaye, et al [arXiv:1308.0494]

BUT ... "Still need to prove that this is robust against machine backgrounds".

Snowmass 2013, Chip Brock & Michael Peskin

This talk will address this point.

Outline

- Muon Collider features.
- Muon Collider and detector challenges.
- Background and detector simulations: MARS and ILCroot frameworks.
- Background characteristics.
- Baseline detector for Muon Collider studies.
- Strategies to reduce the background in the detector.
- The Muon Collider as a H/A factory.
- H/A simulation with full background at 1.5 TeV.
- Conclusions and Remarks.

Muon Collider Features and Impact on Detector Design

- **COMPACT**
 - Synchrotron radiation (1/mass⁴) does not limit muon circular acceleration, a circular machine with multi-TeV beams can be realized and it fits on laboratory site.
- TWO DETECTORS (2 lps)

No need for "push and pull". Detectors can be more "complicated", no frequent reallignement.

MULTI-TEV MACHINE

Possibility to reach energy > 3 TeV. $\longrightarrow \lambda_1 \ge 7$ calorimeter and $1/\sqrt{E}$ energy resolution.

NARROW ENERGY SPREAD

The beam energy resolution is not limited by beamstrahlung smearing, precision scans, kinematic constraints. High resolution detector.

 $ightharpoonup \Delta T(BUNCH) \sim 10 \ \mu s \ ... (e.g. 4 TeV collider)$

Lots of time for readout. Possible triple read-out calorimeter for neutron fluctuation compensation.

ENHANCED S-CHANNEL HIGGS PRODUCTION

Higgs coupling is proportional to mass and $(m_{\mu}/m_{e})^{2} = \sim 40000$

Good detector resolution and PID.

Muon Collider Challenges

- > MUONS ARE PRODUCED AS TERTIARY PARTICLES
 - To make enough of them we must start with a MW scale proton source & target facility.
- > MUONS DECAY

Everything must be done fast and we must deal with the decay electrons (& neutrinos).

- MUONS ARE BORN WITHIN A LARGE 6D PHASE-SPACE
 - For a MuC we must cool them before they decay. New cooling technique (ionization cooling) must be demonstrated, and it requires components with demanding performance (NCRF in magnetic channel, high field solenoids.)
- > AFTER COOLING, BEAMS STILL HAVE LARGE EMITTANCE

S. Geer- Accelerator Seminar SLAC 2011

Main Detector Challenges: Muons Decay!

- The Muon Collider will be a precision machine: the detector performance must be very demanding.
- One of the most serious technical issues in the design of a Muon Collider experiment is the background.
- ➤ The major source come from muon decays:
 for 750 GeV muon beam with 2*10¹² muons/bunch, ~ 4.3*10⁵ decays/m/bunchX.
- Electromagnetic showers induced by electrons and photons generate intense fluxes of particles in the collider components and in the detector.
- High levels of background and radiation are expected both in the detector and in the storage ring with a rate of 0.5-1.0 kW/m.
- The background will affect the detector performance: difficulties of track reconstruction because of extra hits in the tracking system and deterioration of jet energy resolution because of extra energy from background hits, aging and damage.
- The Muon Collider physics goals and the background will guide the choice of technology and parameters for the design of the detector.

Extensive and Detailed Simulation Studies: MARS and ILCroot Frameworks

- MARS is the framework for simulation of particle transport and interactions in accelerator, detector and shielding components.
- New release of MARS15 is available since February 2011 at Fermilab (N. Mokhov, S. Striganov, see www-ap.fnal.gov/MARS).
- ➤ Background simulation in the studies shown in this presentation is provided at the surface of MDI (10° nozzle + walls).
- ➤ ILCroot is a software architecture based on ROOT, VMC & Aliroot:
 - All ROOT tools are available (I/O, graphics, PROOF, data structure, etc).
 - Extremely large community of ROOT users/developers.
- It is a simulation framework <u>and</u> an offline system:
 - Single framework, from generation to reconstruction and analysis!!
 - Six MDC have proven robustness, reliability and portability
 - VMC allows to select G3, G4 or Fluka at run time (no change of user code).
- Widely adopted within HEP community (4th Concept, LHeC, T1015, SiLC, ORKA, MuC)
 - Detailed detector simulation, full simulation and physics studies are presented in this presentation.

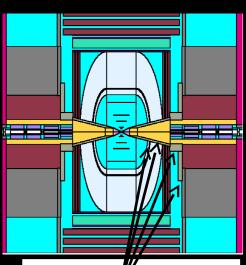
 MAP 2014 May 27-31, 2014
- It is available at Fermilab since 2006.

Part of the Solution: Shieldings

- Extensive studies (Mokhov et al., Fermilab) show a reduction of the background up to three order of magnitude using sophisticated shielding.
- Tungsten nozzle to stop gammas (generate neutrons), in Borated
 Polyethylene shell to absorb neutrons (and concrete walls outside the detector region)
- Detailed magnet geometry, materials, magnetic fields maps, tunnel, soil outside and a simplified experimental hall plugged with a concrete wall are simulated in MARS framework.

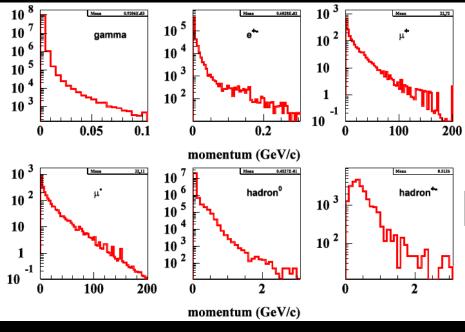
Number and species of particles per bunch crossing entering the detector, starting from S_{max} = 75m for a 1.5 TeV collider.

0.6-deg			
	- District		
1	0.0 -d	90	
	VIII	//	


Particle	0.6-deg	10-deg
Photon	1.5 x 10 ¹¹	1.8 x 10 ⁸
Electron	1.4×10^9	1.2×10^6
Muon	1.0 x 10 ⁴	8.0×10^3
Neutron	5.8 x 10 ⁸	4.3×10^7
Charged hadron	1.1 x 10 ⁶	2.4 x 10 ⁴

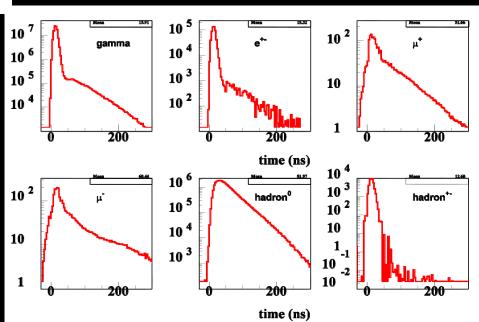
No time cut applied, can help substantially (see next)

All results below are presented

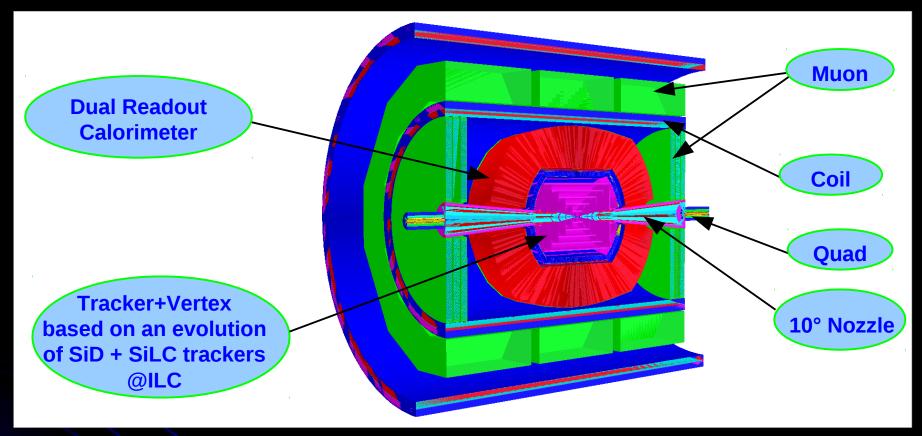

for a 1.5 TeV collider and a 10° nozzle

Sophisticated shielding: W, iron, concrete & BCH₂

The Background Entering the Detector

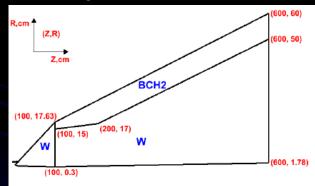

Only 4% background pictured S. Striganov Hits in the calorimeter

> Most of the background is out of time Timing cut can further reduce the background


Most of the background are low momenta photons and neutrons

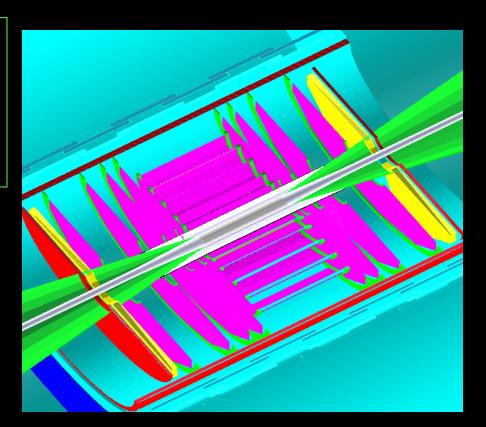
Still a lot of background!!!!! **MARS Simulation**

Baseline Detector for Muon Collider Studies



- Detailed geometry (dead materials, pixels, fibers ..)
- Full simulation: hits-sdigits-digits. Includes noise effect, electronic threshold and saturation, pile up...
- Tracking Reconstruction with parallel Kalman Filter.
- Light propagation and collection.
- >Jet reco

Vertex Detector (VXD) 10°Nozzle and Beam Pipe


VXD

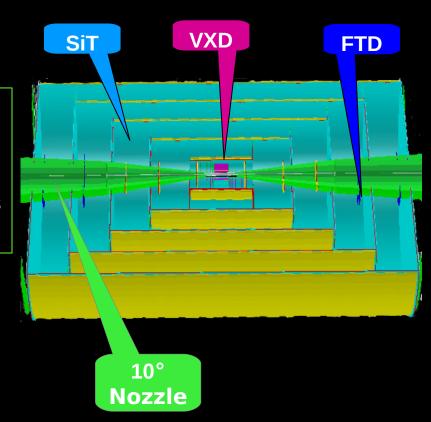
- 75 μm thick Si layers in the barrel
- 100 μm thick Si layers in the endcap
- 20 μm x 20 μm Si pixel
- Barrel : 5 layers subdivided in 12-30 ladders
- R_{min} ~3 cm R_{max} ~13 cm L~13 cm
- Endcap: 4 + 4 disks subdivided in 12 ladders
- Total length 42 cm

NOZZLE

- W Tungsten
- BCH2 Borated Polyethylene
- Starting at ±6 cm from IP with
 R = 1 cm at this z

PIPE

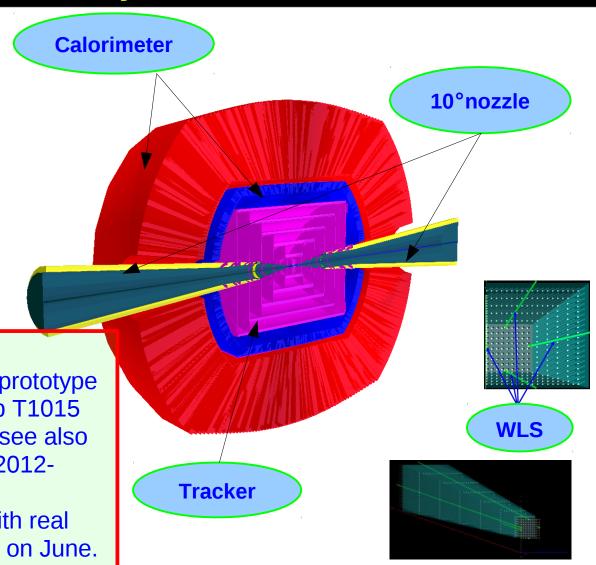
- Be Berylium 400 μm thick
- 12 cm between the nozzles

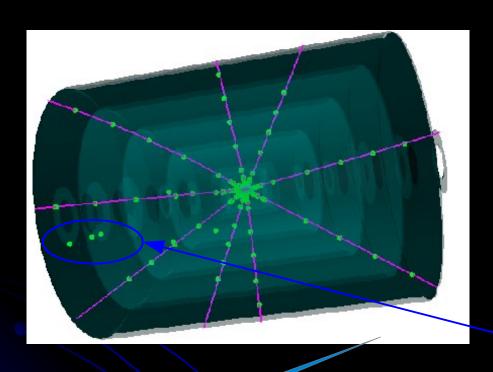

Silicon Tracker (SiT) and Forward Tracker Detector (FTD)

SiT

- 200 μm thick Si layers
- 50 μm x 50 μm Si pixel (or Si strips or double Si strips available)
- Barrel : 5 layers subdivided in staggered ladders
- Endcap: (4+3) + (4+3) disks subdivided in ladders
- R_{min} ~20 cm R_{max} ~120 cm L~330 cm

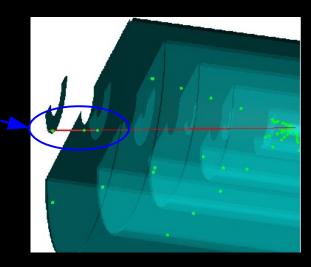
FTD


- 200 μm thick Si layers
- 50 μm x 50 μm Si pixel
- Endcap : 3 + 3 disks
- Distance of last disk from IP = 190 cm


- Silicon pixel for precision tracking amid up to 10⁵ hits
 - Tungsten nozzle to suppress the background

Dual-Readout Projective Calorimeter

- Lead glass + scintillating fibers
- ~1.4° tower aperture angle
- Split in two sections
- Front section 20 cm depth
- Rear section 160 cm depth
- ~ 7.5 λ_{int} depth
- >100 X₀ depth
- Fully projective geometry
- Azimuth coverage down to ~8.4° (Nozzle)
- Barrel: 16384 towers
- Endcaps: 7222 towers
- ➤ All simulation parameters corresponds to **ADRIANO** prototype #9 beam tested by Fermilab T1015 Collaboration in Aug 2012 (see also T1015 Gatto's talk at Calor2012-Calor2014).
- ➤ 5 more prototypes tested with real beam. The 6th will be tested on June.



Effect of the 10° nozzle

ILCroot event display for 10 muons up to 200 GeV

green - hits
purple - reconstructed tracks
red - MC particle

10 generated muons 9 reconstructed tracks

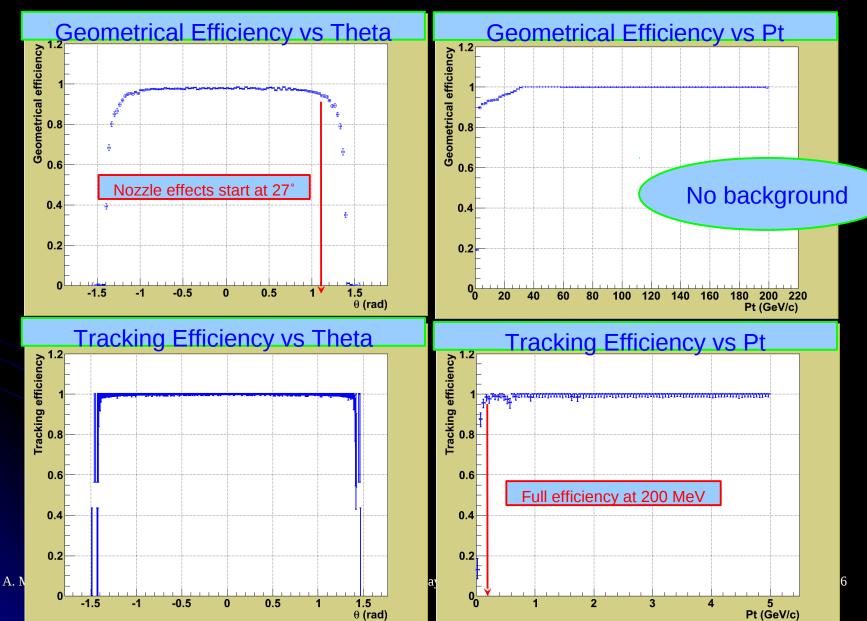
Tracking System Studies: Nozzle Effects on Tracking Performance

Reconstruction Efficiency & Resolutions

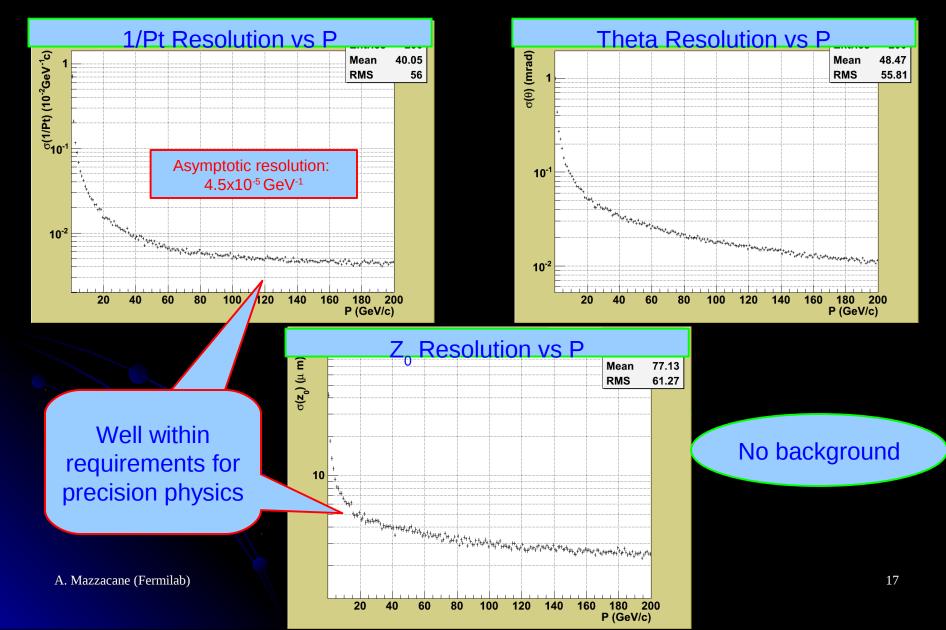
$$\epsilon_{tot} = \frac{reconstructed tracks}{generated tracks} = \epsilon_{geom} * \epsilon_{track}$$

$$\epsilon_{geom} = \frac{reconstructable tracks}{generated tracks}$$

$$\epsilon_{track} = \frac{reconstructed\ tracks}{reconstructable\ tracks}$$

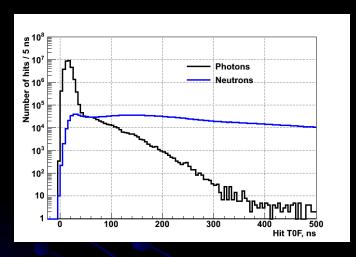

Defining "reconstructable tracks" (candidate for reconstruction)

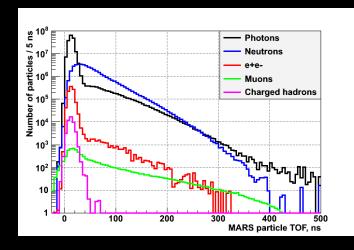
tracks with DCA(true) < 3.5 cm


AND

at least 4 hits in the detector

Reconstruction Efficieny for Single Muons

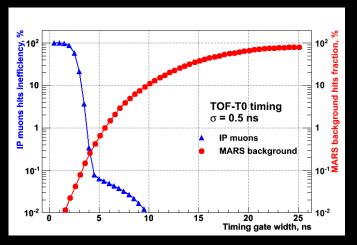

Resolutions for single muons



Timing Is The Key For Abating The Background

Timing for MARS background particles

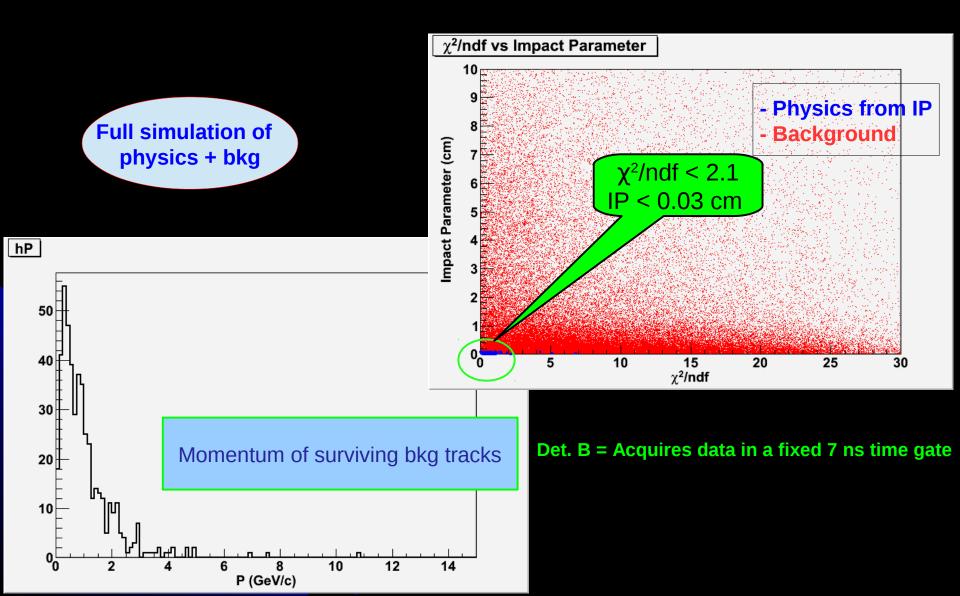
- MARS background (on a surface of the shielding cone) up to ~1000 ns of TOF (time of flight w.r.t. BX)



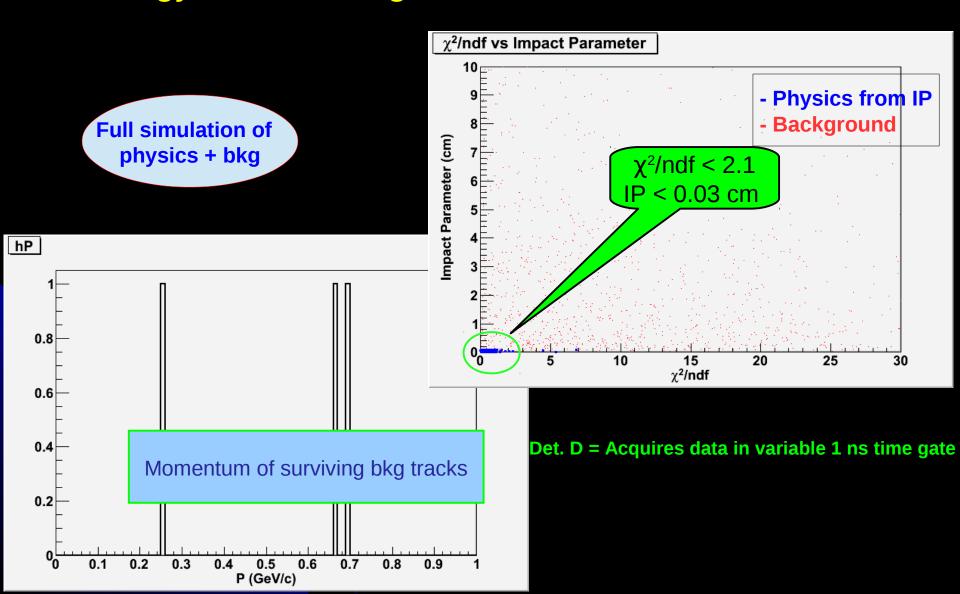
- Timing of ILCRoot MARS background hits in VXD and Tracker
 - TOF for neutron hits has long tale up to a few ms (due to "neutron gas")

Time gate width of 4 ns can provide a factor of 300-500 background rejection keeping efficiency of hits from IP particles higher than 99% at hit time resolution σ =0.5 ns.

A. Mazzacane (Fermilab)


Strategies To Reduce Clusters In The Tracking System Produced By The Machine Background

	Kalman Reconstruction	Clusters
Physics: 100 μ (0.2-200) GeV/c	92 (include geom. eff.)	1166
Machine Background	-	4 x 10 ⁷


Simulated in ILCroot 4 detectors with different timing capabilities:

- \triangleright **Det.** A No time information (integrates all hits).
- Det. B Acquires data in a fixed 7 ns time gate
 (minimal timing capabilities).
- Det. C Acquires data in a 3 ns time gate tuned to distance from IP (advanced timing capabilities).
- Det. D Acquires data in a 1 ns time gate tuned to pixel distance from IP (extreme timing capabilities.)

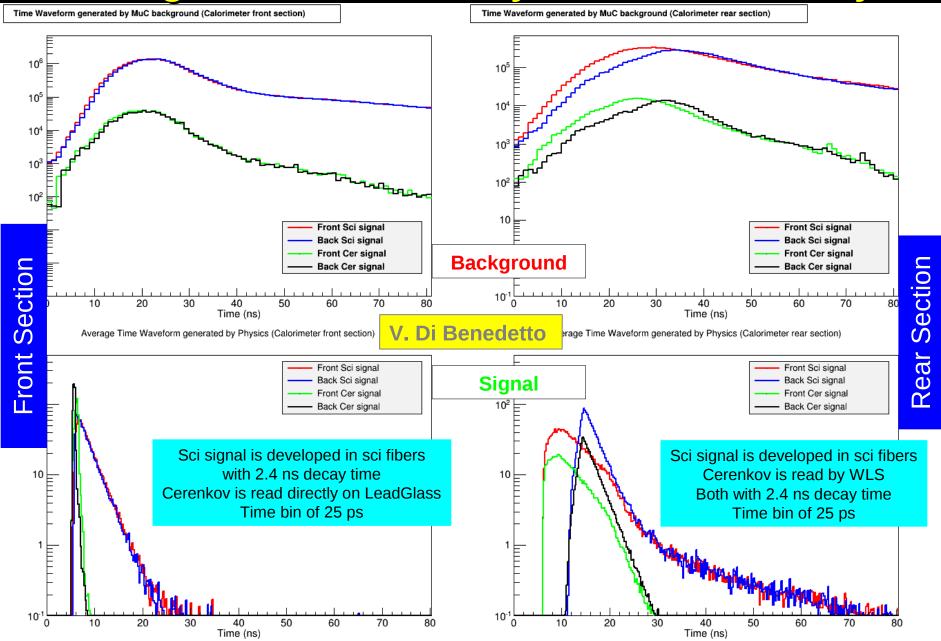
Physics vs Background in Det. B: A strategy to disentangle reconstructed tracks from IP

Physics vs Background in Det. D: A strategy to disentangle reconstructed tracks from IP

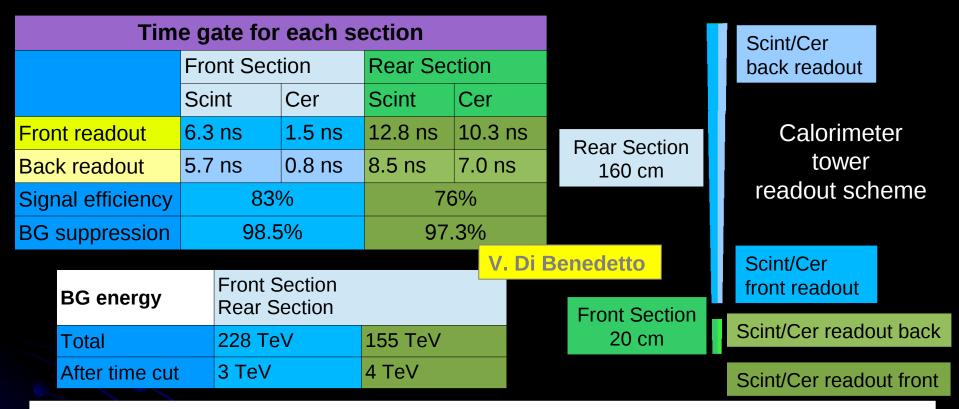
Reconstructed Background Tracks (from Kalman filter)

Full vs Fast simulation of the bkg

Detector type	Reconstructed Tracks (full simu)	Reconstructed Tracks (fast simu)
Det. A (no timing)	Cannot calculate	Cannot calculate
Det. B (7 ns fixed gate)	75309	64319
Det. C (3 ns adjusteble gate)	6544	4639
Det. D (1 ns adjusteble gate)	1459	881


After χ^2 and IP cuts

Detector type	Reconstructed Tracks (full simu)	Reconstructed Tracks (fast simu)
Det. A (no timing)	Cannot calculate	Cannot calculate
Det. B (7 ns fixed gate)	475	405
Det. C (3 ns adjusteble gate)	11	8
Det. D (1 ns adjusteble gate)	3	1


Full reconstruction is paramount when combinatorics is relevant

A. Mazzacane (Fermilab)

Timing Is Also The Key For Calorimetry

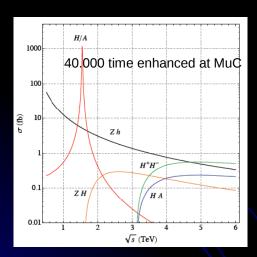
Background Rejection In The Calorimeter

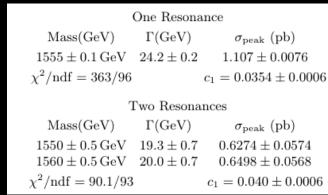
Approach to reject machine background.

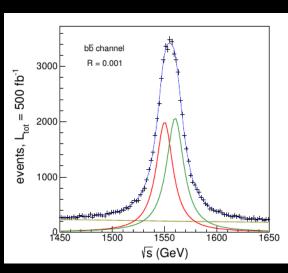
- Apply time cut.
- Individuate Region of Interest (RoI), i.e. regions where the energy is 2.5σ above the background level in that region.
- In the Rol apply soft energy subtraction, i.e. subtract the mean value of the background in that region.

On going studies

 \triangleright In the other regions apply hard energy cut, i.e. subtract 4σ of the background.


The Muon Collider as a H/A factory: Theory

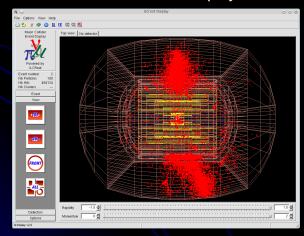

- ➤ Heavy Neutral Higgses (H/A) and charged Higgses (H[±]) are a simple possibility of new physics beyond the Standard Model.
- ➤ H/A are likely to be difficult to find at the LHC, and at e+ e- colliders are produced in association with other particles, such as Z, since the electron Yukawa coupling is too small for s-channel production.


The H and A can be produced as s-channel resonances and direct measured at a Muon

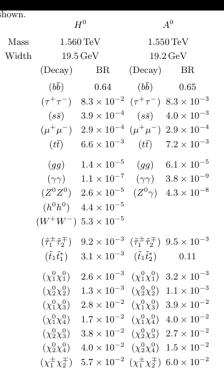
Collider (Eichten and Martin arXiv:1306.2609).

E. Eichten & A. Martin

H/A production in the Natural Supersymmetry model compared with Z⁰h, Z⁰H and heavy Higgs pair production.


Pseudo-data (in black) along with the fit result in the bb channel. The peak signal is more than an order of magnitude larger than the physics background. $(m_H m_A)$

$$\sigma_B(\sqrt{s}) = c_1 \frac{(m_H m_A)}{s(\text{in TeV}^2)}$$


The Muon Collider as a H/A factory: "Reality"

- Fully simulated with track and calorimeter reconstruction in ILCroot framework 4000 H/A events generated by Pythia at $\sqrt{s} = 1550$ GeV with a Gaussian beam energy smearing (R=0.001) (A. Martin)
- In these studies, considered the b̄b̄ decay of the H/A which is the channel with the largest BR (64%).
- Applied a perfect b-tagging (using information from MonteCarlo truth).
- Reconstructed 2 jets applying PFA-like jet reconstruction developed for ILC benchmark studies.

ILCroot Event Display

NO machine background

The Muon Collider as a H/A factory: "Reality" (cont'd)

Jet Reconstruction Strategy

Assume the jet made of 2 non-overlapping regions

<u>Core</u>: region of the calorimeter with overlapping showers

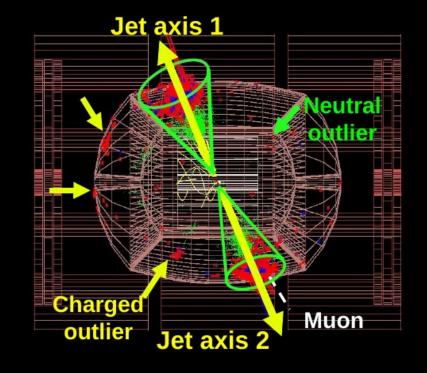
Outliers: hit towers separated from the core

Measure the Jet axis

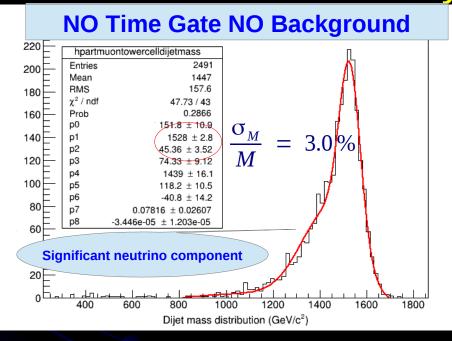
using information from the tracker detectors

Measure the Core energy

using information from the calorimeter

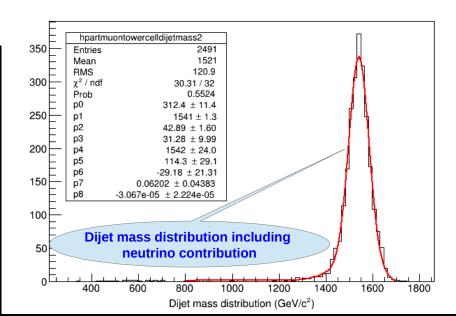

Reconstruct **Outliers** individually

using tracking and/or calorimetry


depending on the charge of the particle

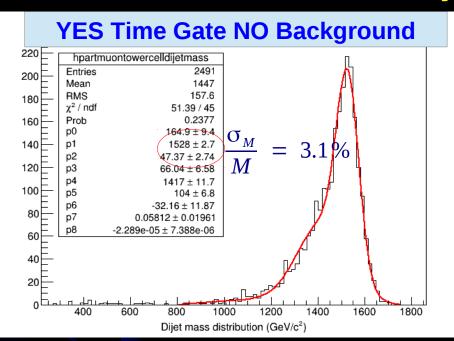
Add Muons escaping from calorimeter

using muon spetrometer



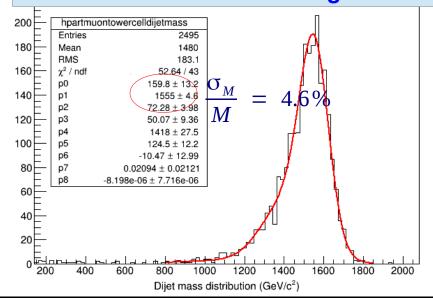
The Muon Collider as a H/A factory: "Reality" (cont'd)

> There is a significant neutrino component


Di-jet mass distribution obtained including the neutrino contribution

A. Mazzacane (Fermilab)

ILCroot Simulation


The Muon Collider as a H/A factory: "Reality" (cont'd)

Fully simulated signal and beam backgroud Applied 3ns time gate and energy cut theta dependent to further reject the background

Applied 3 ns layer dependent time gate in the tracking system and the time gate shown in slide #16 in the calorimeter.

YES Time Gate YES Background

A. Mazzacane (Fermilab)

ILCroot Simulation

Why MuC Detector R&D Is Important

- > Background vs Physics rejection has unprecedented characteristics compared to previous HEP experiments.
 - The background is huge but out-of-time and enter in the detector with a quite uniform distribution.
 - The Machine Detector Interface (MDI) has an important role and has to be considered an integral part of the detector: i.e. the geometry changes as the shielding strategy evolves.
 - The MDI affects the physics program, especially Susy signals, by the presence of forward shielding and instrumentation.
- New detector technologies need to be exploited. Push for a new detector generation.

Tracking

- Simulations indicate the Si detectors are a good solution, but many issues have to be addressed.
- The inner radius of the vertex is set by the beam background and the shielding nozzle. But the impact parameter resolution and the physics reach are affected.
- High granularity is required to low occupancy. But charge sharing limits the pixel size.
- Fast timing is crucial. But power requirements need to be understood.

Calorimetry

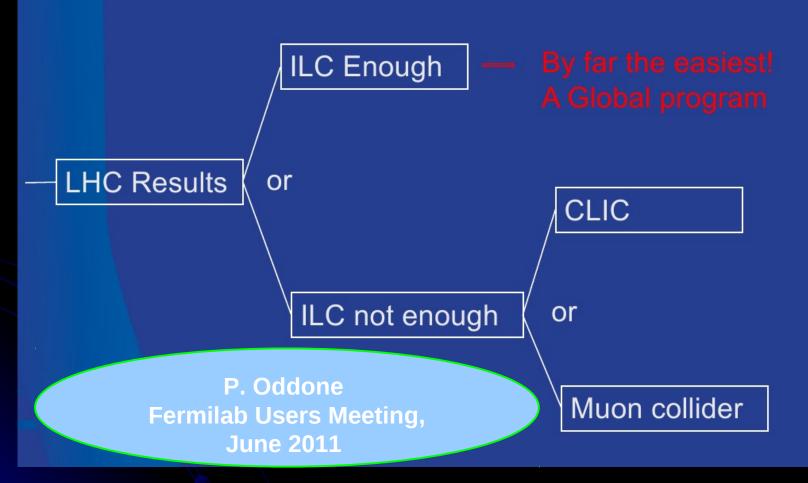
- PFA disadvantaged at multi-TeV energies and in a MuC environment (Small $\lambda_{||}$, $\sigma_{||}/E = \cos t$. Higher confusion term).
- Fast Dual/Triple-Readout can be a better option ($\lambda_1 \ge 7$, $\sigma_E/E = 1/\sqrt{E}$, but the radiation hardness is crucial).
- LAPPD for picosecond-level resolution and excellent photon-counting capabilities.

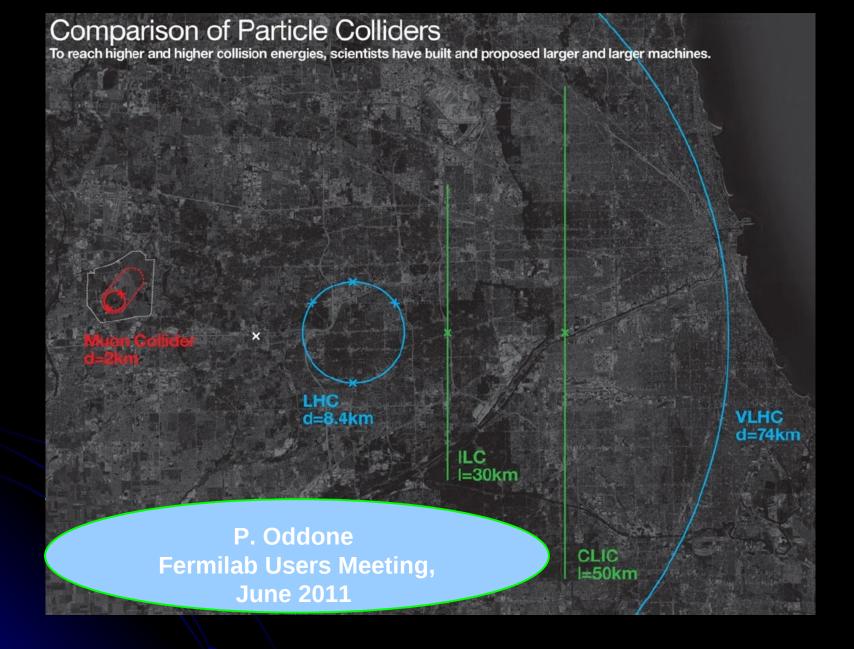
Software and Simulations

- We understood many things since these studies began thanks to simulations. Simulations are crucial:
 - to guide through technologies and help identifying the figure of merit for each subdetector.
 - to optimize parameters and to build prototypes to test.
- We need to unify efforts and expertise in order to make detector performance and physics studies for future colliders possible in a realistic time scale and man power.
- Software frameworks (MARS, ILCroot, SLIC) mature for advanced and realistic studies.

Conclusions

- A large background is expected into the detector from interactions of muon decay products with the beamline components and the accelerator tunnel.
- The background affects the detector performance and can spoil the physics program at a Muon Collider experiment.
- Sophisticated shielding have been proposed to suppress the machine background.
- MARS15 simulation shows a reduction of the machine background ~ 3 orders of magnitude (depends on the nozzle angle).
- The baseline detector configuration for a Muon Collider has been developed in ILCroot framework and studies on the performance are well advanced.
- Full simulation and reconstruction of Si-tracking detectors and a dual-readout calorimeter are implemented in ILCroot framework (thanks to previous and detailed studies at ILC).


Conclusions (cont'd)


- > Both ad-hoc tracking and calorimetry simulation implemented in the current software framework.
- The background is very nasty, even with a 10° nozzle, but we have shown that we are on the right track to reach the physics goal at a Muon Collider experiment.
- Current studies show that timing cut is an effective tool to reducing the background to an acceptable level.
- ➤ However the needed timing for the Si detectors is at the limit of existing pixel devices (power consuption-cooling, material budget) and beyond the current calorimeter technology ⇒ Extensive R&D is needed.
- A second generation of detector and reconstruction algorithm are under consideration:
 - 3-D Si-pixel with precision timing
 - 4-D Kalman filter
 - segmented calorimeters with enhanced timing.

The Muon Collider is the opportunity to bring back collider physics to US soil.

Backup slides

Potential Muon Collider Parameters

Table B-2: A summary of potential parameters for muon colliders with center of mass energies ranging from the Higgs resonance up to 6 TeV

Muon Collider Parameters								
		Higgs Factory		Top Threshold Options		Multi-TeV Baselines		
								Accounts for
		Startup	Production	High	High			Site Radiation
Parameter	Units	Operation	Operation	Resolution	Luminosity			Mitigation
CoM Energy	TeV	0.126	0.126	0.35	0.35	1.5	3.0	6.0
Avg. Luminosity	10 ³⁴ cm ⁻² s ⁻¹	0.0017	0.008	0.07	0.6	1.25	4.4	12
Beam Energy Spread	%	0.003	0.004	0.01	0.1	0.1	0.1	0.1
Higgs* or Top* Production/107sec		3,500*	13,500*	7,000 ⁺	60,000°	37,500*	200,000*	820,000*
Circumference	km	0.3	0.3	0.7	0.7	2.5	4.5	6
No. of IPs		1	1	1	1	2	2	2
Repetition Rate	Hz	30	15	15	15	15	12	6
β*	cm	3.3	1.7	1.5	0.5	1 (0.5-2)	0.5 (0.3-3)	2.5
No. muons/bunch	10 ¹²	2	4	4	3	2	2	2
No. bunches/beam		1	1	1	1	1	1	1
Norm. Trans. Emittance, ϵ_{TN}	π mm-rad	0.4	0.2	0.2	0.05	0.025	0.025	0.025
Norm. Long. Emittance, ϵ_{LN}	$\pi \text{ mm-rad}$	1	1.5	1.5	10	70	70	70
Bunch Length, σ _s	cm	5.6	6.3	0.9	0.5	1	0.5	2
Proton Driver Power	MW	4 [#]	4	4	4	4	4	1.6

[#] Could begin operation with Project X Stage II beam

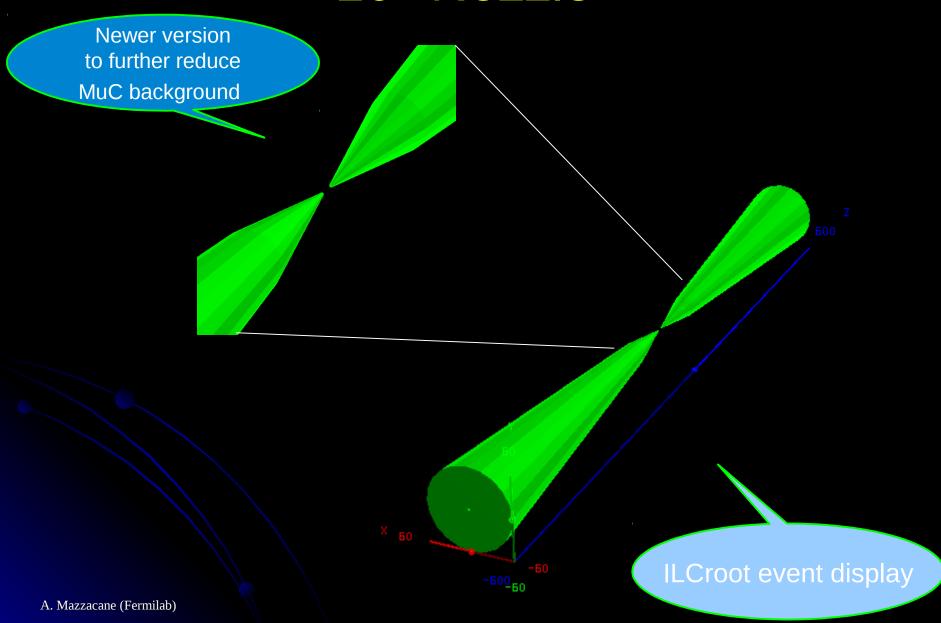
Introduction

Physics goals of a Muon Collider (MC) can only be reached with appropriate design of the ring, interaction region (IR), high-field superconducting magnets, machine-detector interface (MDI) and detector. All - under demanding requirements, arising from the short muon lifetime, relatively large values of transverse emittance and momentum spread, unprecedented dynamic heat loads (0.5-1 kW/m) and background particle rates in collider detector.

Sources of Background and Dynamic Heat Load

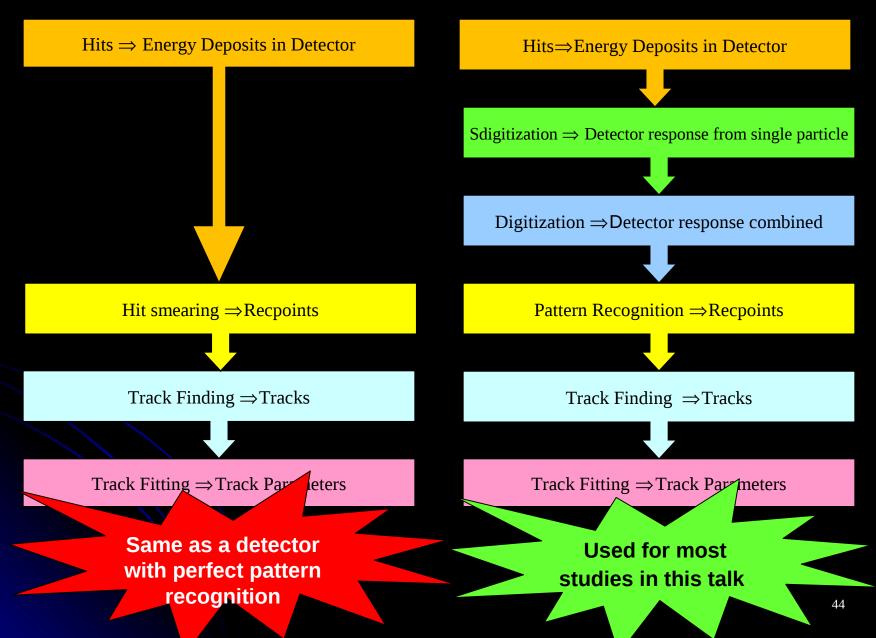
- 1. IP $\mu^{\pm}\mu^{\pm}$ collisions: Production x-section 1.34 pb at \sqrt{S} = 1.5 TeV (negligible compared to #3).
- 2. <u>IP incoherent etet pair production:</u> x-section 10 mb which gives rise to background of 3×104 electron pairs per bunch crossing (manageable with nozzle & detector B)
- 3. Muon beam decays: Unavoidable bilateral detector irradiation by particle fluxes from beamline components and accelerator tunnel major source at MC: For 0.75-TeV muon beam of 2x10½, 4.28x10⁵ dec/m per bunch crossing, or 1.28x10⅙ dec/m/s for 2 beams; 0.5 kW/m.
- **4. Beam halo:** Beam loss at limiting apertures; severe, can be taken care of by an appropriate collimation system far upstream of IP.

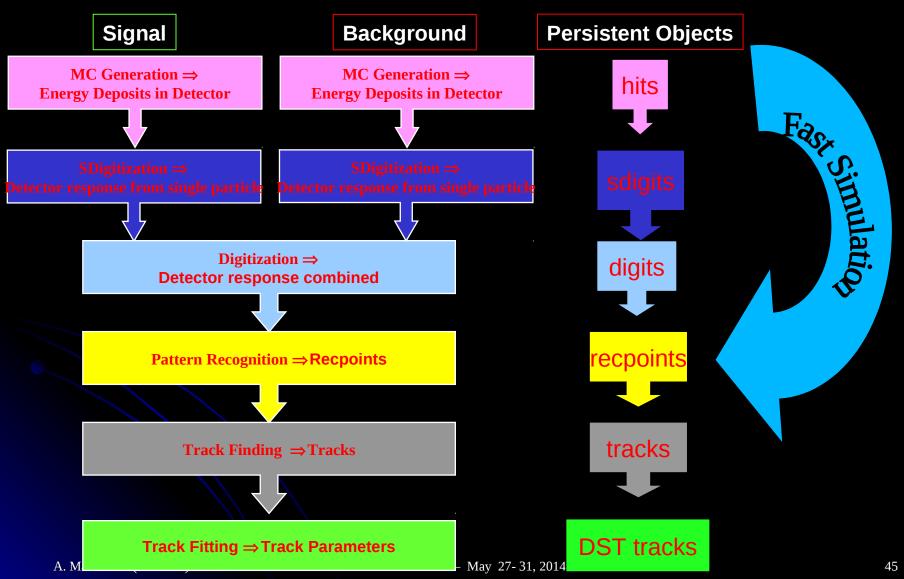
SUMMARY (1)


- 1. Backgrounds originated at IP are negligible compared to other sources: hadrons from $\mu^+\mu^-$ collisions; incoherent pairs are captured by nozzles in the solenoid field.
- 2. Backgrounds induced by beam halo losses exceed the limits by orders of magnitude, but can be suppressed with an appropriate collimation system.
- 3. Muon beam decays are the major source of backgrounds in the MC detectors. They can drastically be reduced by sophisticated collimating nozzles at IP, and sweep dipoles and collimators in a 100-m region upstream IP.

Background Suppression

Dipoles close to the IP and tungsten masks in each interconnect region help reduce background particle fluxes in the detector by a substantial factor. The tungsten nozzles, assisted by the detector solenoid field, trap most of the decay electrons created close to the IP as well as most of incoherent e⁺e⁻ pairs generated in the IP. With additional MDI shielding, total reduction of background loads by more than three orders of magnitude is obtained.


10° Nozzle


ILCroot: root Infrastructure for Large Colliders

- Software architecture based on root, VMC & Aliroot
 - All ROOT tools are available (I/O, graphics, PROOF, data structure, etc)
 - Extremely large community of users/developers
- Re-allignement with latest Aliroot version every 1-2 years (v4.17 release)
- It is a simulation framework and an Offline Systems:
 - Single framework, from generation to reconstruction through simulation. Don't forget analysis!!!
 - It is immediatly usable for test beams
 - Six MDC have proven robustness, reliability and portability
- Main add-ons Aliroot:
 - Interface to external files in various format (STDHEP, text, etc.)
 - Standalone VTX track fitter
 - Pattern recognition from VTX (for si central trackers)
 - Parametric beam background (# integrated bunch crossing chosen at run time
- Growing number of experiments have adopted it: Alice (LHC), Opera (LNGS), (Meg), CMB (GSI), Panda(GSI), 4th Concept, (SiLC?) and LHeC
- It is Publicly available at FNAL on ILCSIM since 2006
- Used for ILC, CLIC and Muon Collider studies

Fast vs Full Simulation

Simulation steps in ILCroot: Tracking system

Fast simulation and/or fast digitization also available in ILCroot for tracking system

- Fast Simulation = hit smearing
- Fast Digitization = full digitization with fast algorithms
- Do we need fast simulation in tracking studies?
 Yes!
- Calorimetry related studies do not need full simulation/digitization for tracking
- Faster computation for quick answer to response of several detector layouts/shielding
- Do we need full simulation in tracking studies?
 Yes!
- Fancy detector and reconstruction needed to be able to separate hits from signal and background

Digitization and Clusterization of Si Detectors in Ilcroot: a description of the algorithms available for detailed tracking simulation and studies

Technologies Implemented

- 3 detector species:
 - Silicon pixels
 - Silicon Strips
 - Silicon Drift

Used for VXD SiT and FTD in present studies

- Pixel can have non constant size in different layers
- Strips can also be stereo and on both sides
- Dead regions are taken into account
- Algorithms are parametric: almost all available technologies are easily accommodated (MAPS, 3D, DEPFET, etc.)

Full Simulation of Si Detectors

SDigitization

- Follow the track in steps of 1 μm
- convert the energy deposited into charge
- spreads the charge asymmetrically (B-field) across several pixels:

$$f(x, z) = Errf(x_{step}, z_{step}, \sigma_x, \sigma_z)$$

$$\sigma_{x} = \sqrt{T \cdot k / e \cdot \Delta l / \Delta V \cdot step}$$

 $\Delta l = Sitickness$, $\Delta V = bias voltage$, $\sigma_x = \sigma_z \cdot fda$

- Parameters used:
 - Eccentricity = 0.85 (fda)
 - Bias voltage = 18 V
 - cr = 0% (coupling probability for row)
 - cc = 4.7% (coupling probability for column)
 - threshold = 0 electrons
 - electronics noise = 0 electrons
 - T° = 300 °K

Digitization

Merge signals belonging to the same channel (pixel)

- Add threshold
- Add saturation

typical Si threshold corresponds to 10-20 KeV E

- Add electronic noise
- Save Digits over threshold
 - threshold = 0 electrons
 - electronics noise = 0 electrons

Cluster Pattern recognition

- Create a initial cluster from adjacent pixels (no for diagonal)
- Subdivide the previous cluster in smaller NxN clusters
- Get cluster and error matrix from coordinate average of the cluster
- ☐ Kalman filter picks up the best Recpoints

Track Fitting in ILCRoot

Track finding and fitting is a global tasks: individual detector collaborate

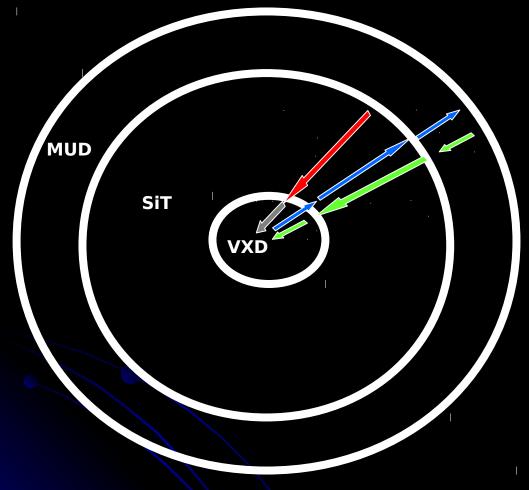
It is performed after each detector has completed its local tasks (simulation, digitization, clusterization)

It occurs in three phases:

- Seeding in SiT and fitting in VXD+SiT+MUD
- Standalone seeding and fitting in VXD
- Standalone seeding and fitting in MUD

Two different seedings:

- Primary seeding with vertex constraint
- Secondary seeding without vertex constraint


Kalman Filter (classic)

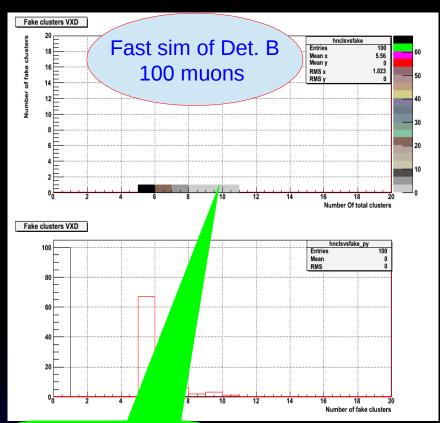
- Recursive least-squares estimation.
- Equivalent to global least-squares method including all correlations between measurements due to multiple scattering.
- Suitable for combined track finding and fitting
- Provides a natural way:
 - to take into account multiple scattering, magnetic field inhomogeneity
 - possibility to take into account mean energy losses
 - to extrapolate tracks from one sub-detector to another

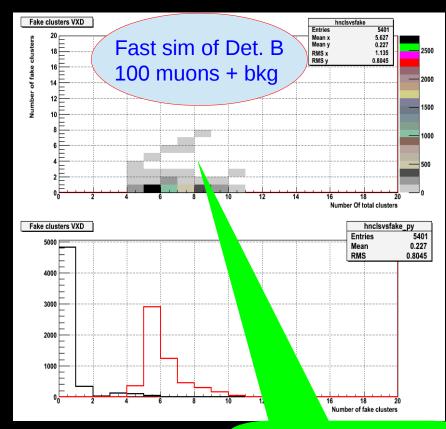
Parallel Kalman Filter

- Seedings with constraint + seedings without constraint at different radii (necessary for kinks and V0) from outer to inner
- Tracking
 - Find for each track the prolongation to the next layer
 - Estimate the errors
 - Update track according current cluster parameters
 - (Possible refine clusters parameters with current track)
- Track several track-hypothesis in parallel
 - Allow cluster sharing between different track
- Remove-Overlap
- Kinks and V0 fitted during the Kalman filtering

Tracking Strategy – Primary Tracks

- Iterative process
 - Seeding in SiT
 - Forward propagation towards to the vertex


- Back propagation towards to the MUD
 VXD → SiT → MUD
- Refit inward


Continuous seeding –track
 segment finding in all detectors

VXD Standalone Tracking

- Uses Clusters leftover in the VXD by Parallel Kalman Filter
- Requires at least 4 hits to build a track
- Seeding in VXD in two steps
 - Step 1: look for 3 Clusters in a narrow row or 2 Clusters + IP constraint
 - Step 2: prolongate to next layers each helix constructed from a seed
- After finding Clusters, all different combination of clusters are refitted with the Kalman Filter and the tracks with lowest χ^2 are selected
- Finally, the process is repeated attempting to find tracks on an enlarged row constructed looping on the first point on different layers and all the subsequent layers
- In 3.5 Tesla B-field $P_t > 20$ MeV tracks reconstructable

Effects of background Hits on Physics

no fake cluster

< 5% of tracks have > 1 fake cluster

Effects on track parameter resolution are unaffected by background